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Abstract— Blind hyperspectral unmixing (HU), which includes
the estimation of endmembers and their corresponding fractional
abundances, is an important task for hyperspectral analysis.
Recently, nonnegative matrix factorization (NMF) and its exten-
sions have been widely used in HU. Unfortunately, most of the
NMF-based methods can easily lead to an unsuitable solution,
due to the nonconvexity of the NMF model and the influence
of noise. To overcome this limitation, we make the best use of
the structure of the abundance maps, and propose a new blind
HU method named total variation regularized reweighted sparse
NMF (TV-RSNMF). First, the abundance matrix is assumed to
be sparse, and a weighted sparse regularizer is incorporated into
the NMF model. The weights of the weighted sparse regularizer
are adaptively updated related to the abundance matrix. Second,
the abundance map corresponding to a single fixed endmember
should be piecewise smooth. Therefore, the TV regularizer is
adopted to capture the piecewise smooth structure of each
abundance map. In our multiplicative iterative solution to the
proposed TV-RSNMF model, the TV regularizer can be regarded
as an abundance map denoising procedure, which improves the
robustness of TV-RSNMF to noise. A number of experiments
were conducted in both simulated and real-data conditions to
illustrate the advantage of the proposed TV-RSNMF method for
blind HU.

Index Terms— Blind unmixing, hyperspectral image, nonneg-
ative matrix factorization (NMF), reweighted sparsity, total
variation (TV).

I. INTRODUCTION

HYPERSPECTRAL image (HSI) analysis has matured
into one of the most powerful and fastest-growing tech-

nologies in the field of remote sensing. The hyperspectral data
provide contiguous or noncontiguous 10-nm bands throughout
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the 300–2500-nm region of the electromagnetic spectrum [1].
With the wealth of available spectral information, hyperspec-
tral imagery has been found to be very useful for many
remote sensing applications [2]–[7]. Unfortunately, due to
the limitation of the spatial resolution and the complexity
of the terrain, a single pixel may contain several kinds of
substances, and is called a “mixed pixel” [8], [9]. Mixed pixels
are common in HSIs, and severely degrade the application of
hyperspectral data. In order to make full use of hyperspectral
data, hyperspectral unmixing (HU) has become an essential
procedure for HSI analysis.

The purpose of HU is to decompose a mixed pixel into a
collection of constitute spectra, called endmembers, and their
corresponding proportions, named abundances. HU algorithms
mainly rely on the expected type of mixing, which can
be characterized as either a linear or nonlinear model [1].
The nonlinear mixing model describes the mixed spectrum
by assuming that the observed pixel is generated from a
nonlinear function of the abundances associated with the
endmembers [10]. However, in a real HSI scene, a small highly
reflective material is capable of dominating the reflectance of
a larger less reflective material at a given pixel [11]. Despite
this fact and other nonlinear properties in HSIs, more and
more researchers have centralized their HU work based on the
linear mixing model (LMM) in recent years, since the LMM
is generally recognized as an acceptable model for many real-
world scenarios.

The LMM assumes that the different endmembers do not
interfere with each other. Based on the LMM, many con-
ventional HU algorithms have been proposed, e.g., endmem-
ber determination plus inversion [12]–[15], dictionary-based
sparse regression [16]–[18], and statistical approaches [19].
In this paper, we focus on the nonnegative matrix factor-
ization (NMF) [20] based approaches to HU. NMF tries to
decompose the high-dimensional data into the multiplication
of two nonnegative matrices: one consisting of “basis vectors”
and the other containing “coefficient vectors” [21]. NMF is
an attractive model that has been widely applied to HU [22].
Unfortunately, the solution space of NMF is very large if
no further constraints are taken into consideration. In addi-
tion, due to the nonconvexity of the objective function of
NMF, the algorithm may fall into local minima. To alleviate
this situation, the abundance sum-to-one constraint (ASC)
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was first added to constrain the solution space. To further
shrink the solution space, additional constraints have also been
imposed upon the endmembers. Miao and Qi [23] integrated
the simplex volume minimization constraint into the NMF
model, and proposed the minimum volume constrained NMF
approach for HU. Huck et al. [24] assumed that the solution
to the endmember spectra should have minimum variance,
and proposed minimum dispersion constrained NMF to unmix
HSIs. Wang et al. [25] proposed the endmember dissimilarity
constrained NMF method. Wang et al. [25] assumed that
the endmember signal should itself be smooth, which is an
approach that was also adopted in [11].

Another strategy to shrink the solution space is adding
the constraint to the abundance maps in the NMF model.
Generally, two kinds of priors are considered in constraining
the abundance matrix. First, the column of the abundance
matrix (corresponding to the coefficient of a single fixed pixel
under the endmember dictionary) should be sparse. This is
mainly because most pixels in HSIs are mixed by a subset
of endmembers, rather than all the endmembers. Under this
assumption, sparse coding [26] was first introduced into HU
to measure the sparseness of the abundance. In [27], the
S-measure constraint was used to measure the sparsity of
the abundance. To overcome the defect of the L1 regularizer,
in that it does not enforce the full additivity constraint,
Qian et al. [28] also explored the use of the L1/2 regularizer
to restrict the sparseness of the abundance maps. Compared to
the L1 regularizer, the L1/2 regularizer can not only provide
sparse solutions which are closer to the truth, but is also
computationally efficient. In [11], the Lq regularizer was
considered to further promote the sparse unmixing of HSIs.
The Lq regularizer can be regarded as an extension of the L1/2
regularizer, and Sigurdsson et al. [11] pointed out that the Lq

regularizer can outperform the L1 regularizer when the signal-
to-noise ratio (SNR) is low or the sparsity of the underlying
model is high. However, how to adaptively select the value of
q is a key problem. Zhu et al. [29] focused on this issue and
proposed a data-guided method to fix the value of q .

Second, the row of the abundance matrix (corresponding
to the abundance map related to one fixed material) should be
piecewise smooth. This is due to the fact that two neighboring
pixels are more likely to have similar fractional abundances for
the same endmember [17]. Based on this fact, Liu et al. [30]
proposed abundance separation and smoothness constrained
NMF (ASSNMF) for HU. Liu et al. [31] introduced local
neighborhood weights into the NMF model and obtained a
more robust HU method, and it was found that the local neigh-
borhood weights could effectively segment the homogenous
and transition areas between different ground-cover types.
In [32] and [33], manifold structures were embedded into the
NMF model, so that highly similar neighboring pixels could
be unmixed together.

In this paper, we explore the properties of the abundance
maps, and we propose a new blind HU algorithm named total
variation regularized reweighted sparse NMF (TV-RSNMF).
From the column perspective of the abundance matrix, only
a subset of the endmembers is used to generate the fixed
pixel. We therefore introduce a weighted sparse regulariza-

tion to enhance the sparsity of the abundance maps in the
NMF model. Typically, weighted sparse models are used
in supervised learning [34]–[36] in which the dictionary is
fixed. In this paper, we explore the sparsity of the abundance
maps in NMF with a weighted sparse model, which is more
challenging since the dictionary (the endmember matrix) is
also updated along with the iteration. In addition, by using an
iterative method to solve the proposed weighted sparse model,
we update the weights used for the next iteration by computing
from the abundance matrix of the current solution. From the
row perspective of the abundance matrix, the abundance maps
related to one fixed material are assumed to be piecewise
smooth [37], and we adopt the TV regularizer to promote the
piecewise smooth property. TV regularization can be regarded
as an abundance map denoising procedure, which significantly
improves the robustness of the proposed method to noise. The
main contributions of this paper are summarized as follows.

1) The reweighted sparse regularizer is incorporated into
the NMF model to promote the sparsity of the abundance
maps. The reweighted sparse regularizer, which can also
be interpreted as a log-sum penalty function, has the
potential to be much more sparsity-encouraging than the
L1 norm.

2) The TV regularizer is embedded into the reweighted
sparse NMF model to capture the piecewise smooth
structure of the abundance maps. By the use of the
TV regularizer, the spatial information of the abundance
maps is enhanced, and the nearby pixels of the HSI are
more likely to be composited by the same materials.

The rest of this paper is organized as follows. In Section II,
the background to HU is introduced. The proposed
TV-RSNMF model and its corresponding optimization solu-
tion method are presented in Sections III and IV, respec-
tively. In Section V, both simulated and real-data experiments
are described and analyzed, and the conclusions are drawn
in Section VI.

II. BACKGROUND

A. Linear Mixing Model

The LMM assumes that a pixel in a hyperspectral data
set is a linear mixture of K known pure material signatures,
called endmembers: A := [a1, a2, . . . , aK ] ∈ RL×K , in which
ai ∈ RL×1 is the spectral signature of the i th endmember
and L represents the number of HSI bands. The correspond-
ing proportion is called the abundance and is denoted as
S := [s1, s2, . . . , sN ] ∈ RK×N , with N representing the
number of pixels of the whole HSI. Based on the LMM,
the HSI data set can be expressed as

Y = AS+ N (1)

where Y ∈ RL×N denotes the signature vectors correspond-
ing to the pixels in the HSI, and N represents Gaussian
noise. In general, two constraints—the abundance nonnegative
constraint (ANC) and the ASC—are added to restrict the
LMM model, and can be explicitly given by

S ≥ 0 (2)

1T
K S = 1T

N (3)
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Fig. 1. Flowchart of the proposed method.

where 1T
K and 1T

N represent all-one vectors with size K and
size N , respectively.

B. Nonnegative Matrix Factorization

NMF has received considerable attention in the field of
HU due to its many advantages. The LMM assumes that
the HSI consists of spectral signatures of endmembers with
corresponding nonnegative abundances. Therefore, the non-
negativity of A and S mentioned earlier is a natural property
of the measured quantities in the hyperspectral data. The
objective function of the classical NMF method is presented
as follows:

min
A,S

1

2
‖Y − AS‖2F , s.t. A ≥ 0, S ≥ 0, 1T

K S = 1T
N (4)

where ‖ · ‖F is the Frobenius norm of the matrix.

III. PROPOSED TOTAL VARIATION REGULARIZED

REWEIGHTED SPARSE NONNEGATIVE MATRIX

FACTORIZATION MODEL

Since the objective function of the NMF model is noncon-
vex, a large number of minima occur during unmixing, and it
is clear that the solution to the function may not be unique,
which leads to instability in the unmixing. Therefore, more
reasonable constraints should be added to the traditional NMF
model. As presented in Fig. 1, from the column perspective,
the abundance of a single fixed pixel is usually assumed
to be sparse. In addition, from the row perspective of the
abundance matrix, the abundance map corresponding to one
fixed material is considered to be piecewise smooth. In this
part, we integrate the sparseness prior and piecewise smooth
regularization into the NMF model to constrain the solution
space of the abundance maps, and we present the TV-RSNMF
model for HU.

A. Reweighted Sparse Prior

As presented in Fig. 1, from the column perspective, the
abundance of a single fixed pixel is usually assumed to be
sparse. This is due to the fact that most of the pixels are
mixtures of only a few of the endmembers in the scene [28].
A typical sparse solution can be summarized as the following
L0 minimization problem:

min
s
‖s‖0, s.t. y = As (5)

where ‖s‖0 counts the number of nonzero components of s.
Since the L0 minimization formulation is a nonconvex and

NP-hard problem, it is usually relaxed to the following L1
minimization problem:

min
s
‖s‖1, s.t. y = As. (6)

Despite its wide use, the L1 regularizer cannot enforce fur-
ther sparsity when the full additivity constraint of the material
abundances is used [28]. As a result, many other regularizers,
such as the S-measure constraint [27], L1/2 [28], L p [11], and
data-guided sparsity [29], have been introduced to explore the
sparsity of the abundance maps. In this paper, inspired by the
pursuit of sparser representation in [34], we propose to utilize
a weighted sparse regularizer to enhance the sparsity of the
abundance matrix in the NMF model.

Candès et al. [34] proved that by carefully weighting the
L1 norm and iteratively updating the weights, the recovery
performance of the L1 minimization framework can be greatly
enhanced. The weighted L1 minimization problem can be
summarized as follows:

min
s
‖w � s‖1, s.t. y = As (7)

in which w ∈ RK×1 is the weight vector, and operator �
means element-wise multiplication.

We take a simple example to illustrate the difference
between L1 minimization and weighted L1 minimization.
Suppose y = As0 = [1, 1, 2]T and

A =
⎡
⎣ 2 1 1

1 1 2
3 2 3

⎤
⎦.

The solution of the L0 minimization (5) is then s0 =
[0, 1, 0]T , while the L1 minimization (6) will find a different
solution, s0 = [1/3, 0, 1/3]T . Clearly, the solution to (5) is
sparser than that of (6). If we introduce a weighting vector
w = [3, 1, 3]T , the weighted L1 minimization (7) will find
the solution in the same way as (5).

As in the illustration, the weighted L1 regularizer can obtain
a sparser result than the L1 regularizer, under the proper
weighting vector. Clearly, how to set the weighting vector to
improve the sparsity of (7) is a crucial problem. Theoreti-
cally, in the weighted sparse minimization formulation (7),
a larger wi will promote the penalty magnitude of si to be
smaller or even 0, and a smaller wi will encourage the penalty
magnitude of si to be larger and nonzero. As a rough rule of
thumb, the value of the weight should be inversely proportional
to the value of s. However, if the exact solution to s is
unknown, the suitable determination of the weighted matrix is
still a difficult task. Fortunately, Candès et al. [34] proposed
an iteratively reweighted algorithm, solving a sequence of
weighted L1 minimization problems, where the weights used
for the next iteration are computed from the value of the
current solution. In this paper, we add this weighted L1
regularizer to the NMF model, and the objective minimization
is presented as follows:

min
A,S

1

2
‖Y − AS‖2F + λ‖W � S‖1

s.t. A ≥ 0, S ≥ 0, 1T
K S = 1T

N (8)
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where W is the weighted matrix with nonnegative elements.
As in [28], we also retain the ASC constraint. The solution
to (8) is briefly presented in Algorithm 1, in which the weight
matrix W used for the next iteration is computed from the
abundance matrix of the current solution

W (k+1)
i, j := 1/

(∣∣S(k)
i, j

∣∣+ eps
)
. (9)

In (9), S(k)
i, j represents the abundance matrix of the

kth iteration, and eps is the predetermined positive constants.
As introduced in [34], the reweighted sparse model can also
be interpreted as a nonconvex log-sum penalty function, and
the optimization (8) can be reformed as

min
A,S

1

2
‖Y − AS‖2F + λ

N∑
i=1

K∑
i=1

log(Si, j + eps)

s.t. A ≥ 0, S ≥ 0, 1T
K S = 1T

N .

In particular, the log-sum penalty function has the potential
to be much more sparsity encouraging than the L1 norm,
which also indicates the superiority of the reweighted sparse
model. More details of the relationship between the reweighted
sparse model (8) and the log-sum penalty function can be
found in [34]. From the computational perspective, by using
the iterative reweighting strategy in Algorithm 1, the opti-
mization (8) can be more easily solved by a series of convex
optimization problems, and the weight matrix is updated step
by step, approaching a result that is inversely proportional to
the exact solution to S.

Algorithm 1 Iterative Reweighted Sparse NMF (RSNMF)
1 Input: HSI image Y, λ.
2 Output: A and S.
3 Initialize: A(0), S(0), and W (0).
4 Repeat until convergence
5 Update the weight matrix with (9).
6 Fix S(k), update A(k+1) via (8).
7 Fix A(k+1), update S(k+1) via (8).

B. Total Variation Regularization

The objective minimization of RSNMF (8) can be reformu-
lated as follows:

min
A,S

N∑
j=1

(
1

2
‖Y j − AS j‖2F + λ‖W j � S j‖1

)

s.t. A ≥ 0, S ≥ 0, 1T
K S = 1T

N (10)

where W j is the j th column of the weight matrix W, and
S j is the abundance vector of the j th pixel. From (10),
it is clear that the RSNMF model is a spectral-based HU
method independently processing the HSI pixels one by one,
and ignoring the spatial-contextual information of the HSI.
However, as pointed out in [17] and [38], it is important to
include the spatial information in HSI analysis. Fig. 2 presents
a simple example demonstrating the importance of spatial
information in the unmixing procedure. If only spectral infor-
mation is used, situations like the one described in the figure

Fig. 2. Example demonstrating the importance of spatial information in HU.

may happen. Consequently, how to explore the spatial-
contextual information in blind HU is a crucial problem. In this
paper, we integrate the TV regularizer into the RSNMF model
to promote the piecewise smooth structure of the abundance
maps, as presented in Fig. 1.

Due to its ability to effectively preserve the edge informa-
tion and promote piecewise smoothness, the TV model was
first proposed by Rudin et al. [39] to solve the gray-level
image denoising problem. For a gray-level image x of size
m × n, the anisotropic TV norm [40] is defined as

‖x‖TV =
m−1∑
i=1

n−1∑
j=1

{|xi, j − xi+1, j | + |xi, j − xi, j+1|}

+
m−1∑
i=1

|xi,n − xi+1,n | +
n−1∑
j=1

|xm, j − xm, j+1|. (11)

For an HSI, every band of the HSI is treated as a gray-level
image. This gray-level TV norm can be applied to each band,
respectively, and then added together. This simple band-by-
band HSI TV norm is defined as follows:

‖X‖HTV =
L∑

j=1

‖FX j‖TV (12)

in which X = AS ∈ RL×N is the clean image, X j repre-
sents the row vector form of the j th band of the HSI, and
F : RN → R

m×n denotes the operator that reshapes the vector
of the j th band back into the 2-D m×n image. Here, we define
N = m × n.

After defining the TV norm of the HSI, we can treat
it as a prior and incorporate it in the maximum a priori
estimation [41] to explore the piecewise smooth structure of
the abundance maps, which can be formulated as an abundance
denoising model

L̂ = arg min
L∈RL×N

{
1

2
‖L− S‖2F + τ‖L‖HTV

}
(13)

where S is the abundance matrix defined before, L̂ denotes the
denoised abundance maps, and ‖L‖HTV =∑K

j=1 ‖FL j‖TV is
the TV of the abundance maps. Significantly, compared to the
input abundance maps S, the output abundance maps L̂ can
obtain a more piecewise smooth structure.

C. TV-RSNMF HU Model

By integrating the TV regularization of the abundance maps
into the RSNMF model, the objective minimization function
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of the proposed TV-RSNMF model becomes

J (A, S) = min
A,S

1

2
‖Y − AS‖2F + λ‖W � S‖1 + τ‖S‖HTV

s.t. A ≥ 0, S ≥ 0, 1T
K S = 1T

N (14)

where the first term is the standard fidelity term, parameter λ
controls the sparsity of the abundance matrix, and the last term
promotes the piecewise smoothness of the abundance maps.

Theoretically, the RSNMF model (8) is a special case of
the TV-RSNMF model (14) when τ is set to 0. Compared
to the other NMF-based HU methods, there are two main
improvements in TV-RSNMF. The first improvement is the
introduction of the reweighted sparse regularizer into the NMF
model, which is more effective than the L1 regularizer at
promoting sparseness. The second improvement is that TV
is used to denoise the abundance maps, which can explicitly
explore the piecewise smooth structure of HSI data. Next,
we introduce the solution to the proposed model.

IV. MODEL OPTIMIZATION AND PARAMETER

SETTING FOR TV-RSNMF

Clearly, the TV-RSNMF model (14) is nonconvex with
respect to A and S. To efficiently solve the problem, we
introduce an auxiliary variable L and convert (14) into the
following equivalent problem:
J (A, S, L) = min

A,S,L

1

2
‖Y− AS‖2F + λ‖W � S‖1 + τ‖L‖HTV

s.t. A ≥ 0, S ≥ 0, L = S, 1T
K S = 1T

N .

If we consider S as the noisy version of the auxiliary
variable L, then the constraint L = S can be absorbed into
the objective function, and we obtain the following alternative
relaxation problem:

J (A, S, L) = min
A,S,L

1

2
‖Y− AS‖2F + λ‖W � S‖1

+μ

2
||L− S‖2F + τ‖L‖HTV

s.t. A ≥ 0, S ≥ 0, 1T
K S = 1T

N (15)

where parameter μ acts as the penalty parameter and controls
the similarity between the abundance matrix S and the vari-
able L. Subsequently, a multiplicative iterative method [42] is
adopted to solve problem (15), which splits the optimization
of (15) into the following three subproblems:

A = arg min
A

J (A, S, L) (16a)

S = arg min
S

J (A, S, L) (16b)

L = arg min
L

J (A, S, L). (16c)

The proposed method consists of three steps: 1) an end-
member estimation step; 2) an abundance estimation step; and
3) an abundance denoising step. In each step, one variable is
updated conditionally upon the current value of the other vari-
ables, such that the value of the objective function decreases
iteratively. A more detailed description is presented in the
following.

A. Update Rules

1) Endmember Estimation: The objective minimization
function to estimate the endmembers is formulated as follows:

J (A) = min
1

2
‖Y− AS‖2F + Tr(�A). (17)

In (17), we add the nonnegative constraint to the objective
function, and � ∈ RL×K is the Lagrange multiplier in matrix
format. To find the minima of (17), one intuitive approach is
to differentiate (17) and set the partial derivatives to 0. Based
on the Karush–Kuhn–Tucker (K-K-T) conditions, we obtain
the following linear equations:

∇A J (A) = ASST − YST + � = 0 (18a)

A�� = 0. (18b)

By element-wise multiplication of both sides of (18a) with A,
we can obtain the following equation:

A� (ASST )− A� (YST )+ A�� = 0. (19)

Substituting (18b) into (19), we obtain the endmember
update rule

A← A� (YST )	 (ASST ). (20)

in which 	 represents the element-wise division.
2) Abundance Estimation: The second step (16b) is to

estimate the abundance, the objective minimization function
of which is formulated as

J (S) = min
1

2
‖Y f − A f S‖2F + λ‖W � S‖1

+ μ

2
||L− S‖2F + Tr(�S) (21)

where Y f and A f are augmented matrices

Y f =
[

Y
δ1T

N

]
, A f =

[
A

δ1T
K

]
. (22)

The Lagrange multiplier is of size � ∈ RK×N , and the
weighted matrix W is estimated as shown in (9). Mathe-
matically, the K-K-T conditions of the minimization (21) are
presented as

∇S J (S) = AT
f A f S− AT

f Y f + λW+μ(S− L)+ � = 0

(23a)

S� � = 0. (23b)

Analogously, we also element-wise multiply both sides
of (23a) with S, and obtain the update rule

S← S� (AT
f Y f + μL

)	 (AT
f A f S+ λW + μS

)
. (24)

3) Abundance Denoising: In the third step, the TV reg-
ularized method is adopted to denoise the abundance maps
presented in (16c), while also promoting the piecewise smooth
structure of the abundance maps. The corresponding objective
minimization function is as follows:

J (L) = min
L

μ

2
||L− S‖2F + τ‖L‖HTV (25)
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which is equivalent to solving the following minimization
problem:

J (L) = min
L

K∑
j=1

(μ

2
||FL j − FS j‖2F + τ‖FL j‖TV

)
. (26)

As a result, the abundance denoising step is divided into K
standard TV denoising problems

L̂ j = min
L j

μ

2
||FL j − FS j‖2F + τ‖FL j‖TV, j = 1, . . . K .

(27)

Algorithm 2 Total Variation Regularized Reweighted Sparse
NMF for HU

1 Input: The observed mixture data Y ∈ RL×N , the number
of endmembers K , the parameters λ, τ , μ, and δ.
2 Output: Endmember signature matrix A and abundance
matrix S.
3 Initialize A, S, L, and weighted matrix W.
4 Repeat until convergence:
5 Update the weighted matrix with (9);
6 Update A by (20);
7 Augment Y and A to obtain Y f and A f , respectively;
8 Update S by (24);
9 Update L by FGP.

In this paper, we use the fast gradient projection algorithm
introduced in [40] to solve problem (27).

Summarizing the aforementioned description, we arrive at a
multiplicative iterative method to solve the TV-RSNMF model,
as presented in Algorithm 2. In the Appendix, we prove that
the objective function in (15) decreases monotonically at each
iteration until convergence is reached.

B. Initialization and Parameter Determination

Due to the global nonconvexity of the proposed
TV-RSNMF, the initialization and parameter determination are
important when implementing the proposed method. We give
a detailed description of these issues in the following.

The first issue concerns the initialization of the endmember
signature matrix A, the abundance matrix S, the auxiliary
variable L, and the weighted matrix W. The auxiliary variable
is set to L = S, and the weighted matrix is initialized as
Wi, j := 1/(|Si, j | + eps). As a result, the main concern is the
initialization of the endmember signature matrix A and the
abundance matrix S. For the endmember matrix A, there are
generally two strategies: random initialization and selection
from the original data. The former strategy randomly allocates
values between 0 and 1 as entries of A. The latter strategy
consists of two methods. The first method is the spectral
information divergence (SID)-based selection to determine A,
which was used in [25]. The second method is to utilize an
unsupervised endmember extraction method to identify the
endmembers as the input of A [28]. After determining the
endmember matrix A in both methods, a fully constrained
least-squares (FCLS) solution [15] is adopted to generate the
abundance matrix S.

The second issue we are concerned about here is the
ANC and ASC constraints, which can reduce the solution
space of the optimization. Generally, if the initial matrices
A, S, and L are nonnegative, the update rules (20) and (24)
can guarantee the nonnegativity of the matrices A and S.
In addition, matrix L can also remain nonnegative in the
update rule (27), as introduced in [40]. The ASC constraint is
controlled by parameter δ, as shown in (22). A larger value of
δ can lead to a more accurate result, but with a much lower
convergence rate. In order to achieve the desired tradeoff, δ
was selected as 15 in our experiments, as in [33].

The determination of parameters λ, τ , and μ is also a vital
issue for the proposed method. Parameter μ is the penalty
parameter for the violation of the linear constraint L = S.
That is to say, the larger the value of μ, the more the similar
optimizations (14) and (15) are. We analyze the influence of
parameter μ on the HU results in the experimental part. From
multiple experiments, we set μ = 1e3. Parameter λ is depen-
dent on the sparsity of matrix S, and parameter τ controls
the impact of preserving the piecewise smooth structure of
the abundance maps. However, the adaptive selection of these
two parameters still remains an open problem, and we discuss
the influence of the two parameters in the experimental part.

How to stop the updating is another important issue. Here,
we adopt two stopping criteria for the optimization. The first
criterion is to set an error tolerance that is predefined. Once
the error is successively within the limits of the tolerance
ten times, the iteration is stopped. The other criterion is to
set a maximum iteration number, which was adopted in our
experiments, using a maximum iteration number of 3000.
Once either of these criteria is met, the optimization ends.

The last issue concerns the estimation of the endmem-
ber number. Even though this is important to the unmixing
result, it is another independent topic. In the experiments,
we assumed the number of endmembers to be known. In fact,
the HySime method proposed in [43] could be adopted to
estimate the number of endmembers.

V. EXPERIMENTAL RESULTS AND DISCUSSION

Both synthetic and real-data experiments were undertaken
to demonstrate the effectiveness of the proposed methods for
HU. We compared the proposed TV-RSNMF and RSNMF
methods with L1/2-NMF [28], ASSNMF [30], graph reg-
ularized L1/2-NMF (GLNMF) [33], and vertex component
analysis/FCLS (VCA-FCLS) [12]. The results were evaluated
using the spectral angle distance (SAD) and root-mean-square
error (RMSE). The SAD was used to compare the similarity
of the endmember signature Ak and its estimate Âk , and is
defined as

SADk = arccos

(
AT

k Âk∥∥AT
k

∥∥‖Âk‖

)
. (28)

The RMSE is defined as

RMSEk =
(

1

N
|Sk − Ŝk |2

)1/2

(29)

where Ŝk is the ground-truth abundance matrix for the
kth endmember.
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Fig. 3. True fractional abundances of endmembers in the simulated data cube. (a) Spectral signatures used to generate the simulated data. (b) Simulated
image. Abundance map of (c) endmember 1, (d) endmember 2, (e) endmember 3, and (f) endmember 4.

Fig. 4. Performance of TV-RSNMF with respect to parameters λ and τ in
terms of (a) SAD and (b) RMSE.

A. Simulated Data Experiments

In the synthetic experiments, as shown in Fig. 3(a), four
spectral signatures were chosen from the U.S. Geological
Survey (USGS) digital spectral library,1 which comprises spec-
tral signatures with reflectance values given in 224 spectral
bands, distributed uniformly in the interval 0.4–2.5 μm. Here,
we only selected 187 low-noise bands to formulate the syn-
thetic experiments, which was consistent with the subsequent
real Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
Cuprite data experiments. The simulated data, generated as
described in [17], consisted of 48× 48 pixels and 187 bands
per pixel. The data were generated using the LMM, with
four signatures as the endmembers, imposing the ASC in
each simulated pixel. Fig. 3(b) shows the simulated image.
In the simulated image, there are pure regions as well as
mixed regions constructed using mixtures ranging between

1http://speclab.cr.usgs.gov/spectral.lib.

Fig. 5. Performance of TV-RSNMF with respect to parameter μ.

two and four endmembers, distributed spatially in the form of
distinct square regions. Fig. 3(c)–(f), respectively, shows the
true fractional abundances for each of the four endmembers.
The background pixels are also made up of mixtures of the
same four endmembers, with different proportions. In addition,
white Gaussian noise was added to the simulated data. The
noise level was controlled by the SNR, which is denoted as

SNR = 10 log
10

E[x T x]
E[nT n] (30)

where x and n represent the observation and noise of a
pixel, respectively, and E[·] denotes the expectation operator.
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Fig. 6. Abundance maps obtained by the different unmixing methods for endmember 4 in the simulated data.

Fig. 7. Some bands of the HYDICE urban data set. (a) Low-noise band.
(b) Noisy band. (c) Water-absorption band.

To allow a fair comparison, in all the simulated experiments,
the initial endmember matrix was fixed and was the same as
the SID result, and the initial abundance maps were generated
by FCLS.

1) Parameter Analysis: We first present the influence of the
sparse regularization parameter λ and the TV regularization
parameter τ on the unmixing results of the simulated data, for
the case of SNR = 20 dB. The proposed TV-RSNMF method
was tested using different values of parameters λ and τ . In the
experiments, λ was changed from 5e−4, 1e−3, 5e−3, 0.01,
0.05, 0.1, 0.2, to 0.3, and τ was changed from 1e−4, 1e−3,
0.01, to 0.1. Parameter μ was fixed as 1e3. All possible
combinations of these parameters were considered. Fig. 4(a)
shows the SAD results achieved by TV-RSNMF with the
different values of parameters λ and τ , and Fig. 4(b) shows
the RMSE results. From the figures, it can be observed that
the SAD and RMSE values are stable and robust when the two
parameters have relatively low values. However, when the two
parameters are close to 0, the SAD and RMSE values increase.
This indicates the positive influence of the two regularizers
with the proper selection of parameters λ andτ . Due to the
high stability of parameter τ , we set its value as 0.01 in all
the experiments. The value of parameter λ is related to the
sparsity of the abundance maps. Qian et al. [28] provided a

method to estimate the sparse regularization parameter λ as
follows:

λe = 1√
L

N∑
l=1

√
N − ‖Yl‖1/‖Yl‖2√

N − 1
. (31)

From Fig. 4, it can be seen that the optimal parameter λ in
the proposed TV-RSNMF method is smaller than λe. To sum
up, it is recommended that parameter λ of the TV-RSNMF and
RSNMF algorithms is selected from the range [λe/10, λe].
In the following simulated experiments, parameter λ of the
TV-RSNMF and RSNMF algorithms was set as 0.01.

Subsequently, we present the influence of the sparse regular-
ization parameter μ on the unmixing results of the simulated
data, for the case of SNR = 20 dB. In the experiments,
parameter μ was changed from 1e1, 1e2, 1e3, to 1e4, with
the other parameters fixed. The SAD results achieved by
TV-RSNMF with the different values of parameter μ are
reported in Fig. 5. From Fig. 5, it can be clearly observed
that the proposed TV-RSNMF is quite robust to parameter μ,
inspiring us to fix parameter μ as 1e3 in all our experiments.

2) Performance Comparisons: We also present the unmix-
ing results with the simulated data contaminated by different
levels of white Gaussian noise. The noise level was selected
as SNR = 10, 20, 30, and 40 dB, respectively. Table I shows
the SAD results achieved by the different methods with the
simulated data sets using all the considered SNR levels, and
Table II presents the RMSE results. In the tables, the best
results are labeled in bold, and the second-best results are
underlined. From Tables I and II, it can be clearly observed
that RSNMF achieves lower SAD and RMSE values than
L1/2-NMF, ASSNMF, GLNMF, and VCA-FCLS. This indi-
cates the advantage of the reweighted sparse regularizer in
the NMF model. In addition, for RMSE, TV-RSNMF obtains
better results than those of RSNMF. When the simulated data
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TABLE I

SAD VALUES OF THE DIFFERENT METHODS WITH THE SIMULATED DATA

TABLE II

RMSE VALUES OF THE DIFFERENT METHODS WITH THE SIMULATED DATA

TABLE III

SAD VALUES OF THE DIFFERENT METHODS WITH THE REAL URBAN DATA SET

are contaminated with a high noise level, the advantage is
more obvious. This phenomenon demonstrates the superiority
of the TV regularizer with the noisy data. From another aspect,
the SAD value of RSNMF is slightly lower than that of
TV-RSNMF in the case of an SNR of 40 dB. This is mainly
due to the fact that the TV regularizer aims to explore the
piecewise smooth structure of the abundance maps, ignoring
the structural exploration of the endmembers.

To further display the performance of the different methods,
we also show the abundance maps estimated for one ran-
domly selected endmember, considering different noise levels,
in the simulated data. Fig. 6 presents the results obtained for
endmember 4. From the figure, it can be clearly observed
that TV-RSNMF achieves smoother abundance maps than the
other methods, no matter the level of noise. Notably, in the
case of SNR = 20 dB, the background part of the abundance
map extracted by TV-RSNMF is homogeneous over the whole
image. Meanwhile, the backgrounds of the abundance maps
extracted by the other methods are all contaminated by noise.
As reported above, the TV regularizer, which indicates one
kind of spatial processing, is extremely useful in HU when
the SNR is low.

B. Real-Data Experiments

Two real-world HSI data sets were used to conduct real-data
experiments: the Hyperspectral Digital Imagery Collection
Experiment (HYDICE) urban data set and the AVIRIS Cuprite
data set. For all the methods implemented in the real-data
experiments, we used the SID-based method to select pixels
as the initial endmember matrix. The initial endmember matrix

was the same for all the NMF-based unmixing methods with
the same real data set, and the experiments were repeated ten
times, to ensure a reliable comparison. Parameters τ and μ
were set as 0.01 and 1e3, respectively, and parameter λ was
set as 0.2, which was within the range of [λe/10, λe], and λe

was estimated by (31).
1) HYDICE Urban Data Set: The original urban data

set contains 210 bands that cover the wavelength range
of 400–2500 nm. Fig. 7 shows some bands of the orig-
inal data, which include low-noise bands, noisy bands,
and water-absorption bands. In the experiment, noisy bands
and water-absorption bands (bands 1–4, 76, 87, 101–111,
136–153, and 198–210) were removed before the unmixing,
leaving 162 bands in total. In light of the previous analy-
ses [28], [30], [44], six types of signatures named “Asphalt,”
“Grass,” “Concrete road,” “Roof#1,” “Roof#2,” and “Tree”
were estimated in the image. The reference signatures were
collected from the spectral library which can be downloaded
from.2

Table III gives the mean SAD values obtained by the
different HU methods, to present the quantitative evaluation.
From the table, it can be clearly observed that the proposed
TV-RSNMF and RSNMF methods achieve lower mean SAD
values than the other methods. This demonstrates the superior-
ity of the proposed reweighted sparse regularizer. In addition,
TV-RSNMF performs slightly better than RSNMF, which
indicates that the spatial processing by the use of the TV
regularizer is effective, even when we omit the high-noise

2http://www.agc.army.mil/
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TABLE IV

SAD VALUES OF THE DIFFERENT METHODS WITH THE REAL CUPRITE DATA SET

Fig. 8. Comparison of the library spectra with the endmember signatures
extracted by TV-RSNMF on the urban data set. (a) Asphalt road. (b) Grass.
(c) Concrete road. (d) Roof#1. (e) Roof#2. (f) Tree.

Fig. 9. Abundance maps of the different endmembers obtained using
TV-RSNMF on the urban data set. (a) Asphalt road. (b) Grass. (c) Concrete
road. (d) Roof#1. (e) Roof#2. (f) Tree.

and water-absorption bands before unmixing. We also present
the unmixing results extracted by the TV-RSNMF method
in one particular case of the experiments. Fig. 8 illustrates
the endmember signatures extracted by TV-RSNMF and the
reference signatures obtained from the library. Fig. 9 presents
the grayscale abundance maps, where a dark pixel denotes a
low abundance of the corresponding endmember.

Fig. 10. Comparison between the USGS library spectra and the endmember
signatures extracted by TV-RSNMF on the AVIRIS Cuprite data.
(a) Alunite. (b) Andradite. (c) Buddingtonite. (d) Dumortierite.
(e) Kaolinite_1. (f) Kaolinite_2. (g) Muscovite. (h) Montmorillonite.
(i) Nontronite. (j) Pyrope. (k) Sphene. (l) Chalcedony.

2) AVIRIS Cuprite Data Set: The second HSI data set used
in our real-data experiments was the AVIRIS Cuprite data
set. The Cuprite data set contains 224 bands, which cover
the wavelength range of 0.4–2.5 μm. A total of 187 bands
remained after removing the low-SNR and water-vapor absorp-
tion bands (bands 1–3, 104–113, 148–167, and 221–224).
A spatial size of 250 × 191 was tailored to conduct the
unmixing procedure. The reference endmember signatures for
the Cuprite data set were selected from the USGS digital
spectral library, which was also utilized in [12] and [29].

According to the existing analysis in [12], there are 14 kinds
of minerals in the Cuprite image. Since there are only tiny
differences between some of the spectra of the same mineral
with different chemical compositions, the estimated num-
ber of endmembers was reduced to 12 for the unmixing.
Table IV presents the mean SAD values achieved by the
different HU methods. From the table, it can again be clearly
seen that the proposed methods achieve lower mean SAD
values than the other methods. However, the advantage of the
TV-RSNMF method over RSNMF is not so obvious. This is
mainly because, in the Cuprite image, the abundance maps
of some endmember signatures tend to be fragmentary, which
weakens the influence of the TV regularizer. Fig. 10 presents
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Fig. 11. Abundance maps of the different endmembers obtained using
TV-RSNMF on the AVIRIS Cuprite data. (a) Alunite. (b) Andradite.
(c) Buddingtonite. (d) Dumortierite. (e) Kaolinite_1. (f) Kaolinite_2.
(g) Muscovite. (h) Montmorillonite. (i) Nontronite. (j) Pyrope. (k) Sphene.
(l) Chalcedony.

the endmember signatures extracted by TV-RSNMF and the
reference signatures obtained from the USGS library, and
Fig. 11 shows the grayscale abundance maps. From the figures,
it can be observed that the signatures extracted by TV-RSNMF
are very similar to the reference signatures.

VI. CONCLUSION

In this paper, we have proposed the TV-RSNMF method
for blind HU. The TV-RSNMF model makes full use of the
structure of the abundance maps to reduce the solution space
of the NMF method. First, the weighted sparse regularizer is
incorporated into the NMF model to enhance the sparseness
of the abundance matrix. In this step, the weights of the
weighted sparse regularizer are updated adaptively related to
the abundance matrix of the current iteration. Second, the TV
regularizer is adopted to denoise the abundance maps, resulting
in the abundance maps being piecewise smooth. The proposed
TV-RSNMF model is solved by a multiplicative iterative
method, which consist of three steps: 1) endmember estima-
tion; 2) abundance estimation; and 3) abundance denoising.
The proposed method was compared with other state-of-the-
art blind HU methods in several experiments, which confirmed
the advantage of TV-RSNMF, in both visual and quantitative
assessments.

Nevertheless, the proposed method still has room for
improvement, and the adaptive selection of parameter λ
remains a key problem. Moreover, in TV-RSNMF, we only
explore the prior knowledge of the abundance maps, but
prior knowledge of the endmembers is also important for
NMF-based HU. How to effectively integrate the prior infor-

mation of both the abundance maps and endmembers into the
NMF model will be the subject of our future work.

APPENDIX

The objective function of TV-RSNMF is presented in (15).
Our purpose here is to prove that this objective function is
nonincreasing in each update step shown in Algorithm 2. That
is to say, if we set Ak, Sk , Lk as the values of the kth iteration
and Ak+1, Sk+1, Lk+1 are the values obtained by the update
rule presented in Algorithm 2, then we should prove

J (Ak+1, Sk , Lk) ≤ J (Ak, Sk , Lk) (32.a)

J (Ak+1, Sk+1, Lk) ≤ J (Ak+1, Sk , Lk) (32.b)

J (Ak+1, Sk+1, Lk+1) ≤ J (Ak+1, Sk+1, Lk) (32.c)

where the update rules are (20), (24), and (27), respectively.
The inequality proof of (32.a) and (32.c) can be found
in [28] and [40], respectively. We present the inequality proof
of (32.b) as follows.

Since the objective function is separable in the columns
of S, we focus on each column of S alone to prove the
inequality of (32.b). The objective function then becomes

J (s) = min
1

2
‖y − A f s‖2F + λ‖w � s‖1 + μ

2
||l − s‖2F

s.t. s ≥ 0, 1T
K s = 1T

N (33)

where y, s, w, and l are the column vectors of Y, S, W ,
and L, respectively. To prove the inequality, we introduce
an auxiliary function G(s, sk) [28] satisfying the conditions
G(s, s) = J (s), G(s, sk) ≥ J (s), and the following equation:

sk+1 = arg min G(s, sk). (34)

Thus, the inequality in each update is guaranteed by

J (sk+1) ≤ G(sk+1, sk) ≤ G(sk, sk) = J (sk). (35)

Similar to [28], we define the auxiliary function G as

G(s, sk ) = J (sk)+ (s − sk)(∇ J (sk))T

+ 1

2
(s − sk)K (sk)(s − sk)T (36)

where the diagonal matrix K (sk) is

K (sk) = diag
((

AT
f A f sk + λw + μsk)	 sk). (37)

Note that the Taylor expansion of J (s) is

J (s) = J (sk)+ (s − sk)(∇ J (sk))T

+ 1

2
(s − sk)

(
AT

f A f + μI
)
(s − sk)T + O(s) (38)

where O(s) stands for the higher-order terms of the Taylor
expansion. Thus, the condition G(s, sk) ≥ J (s) is satisfied if
and only if

1

2
(s − sk)

(
K (sk)− AT

f A f − μI
)
(s − sk)T ≥ 0. (39)

Due to the nonnegativity of s and w, the term K (sk) −
AT

f A f − μI is easily identified as a positive semidefinite
matrix [45]. It remains to be shown that the update rule
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of (23) selects the minimum of G(s, sk). The minimum can
be obtained by taking the gradient to be 0

∇s G(s, sk) = AT
f (A f sk − y)+ λw

+ μ(sk − l)+ K (sk)(s − sk) = 0. (40)

By solving (40), we obtain

s = sk − K−1(AT
f (A f sk − y)+ λw + μ(sk − l)

)
= sk − sk 	 (AT

f A f sk + λw + μsk)
� (AT

f (A f sk − y)+ λw + μ(sk − l)
)

= sk 	 (AT
f A f sk + λw + μsk)� (AT

f y + μl
)

(41)

which is the desired update rule. This completes the proof.
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